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ABSTRACT

Title of Dissertation: Locking-free mixed hp finite element methods for linear and

geometrically nonlinear elasticity.

Lawrence K. Chilton, Doctor of Philosophy, 1997

Dissertation directed by: Dr. Manil Suri, Professor

Department of Mathematics and Statistics

University of Maryland Baltimore County

We consider the mixed formulation of the linear elasticity problem. We identify

stable families of mixed finite element spaces for both curvilinear quadrilateral and

triangular elements. We give conditions under which these elements converge at

asymptotically optimal (or near-optimal) rates, both in terms of the mesh width h

and polynomial degree p. We validate these findings computationally. Finally, we

identify a mixed formulation for the geometrically nonlinear elasticity problem and

experimentally investigate the stability of our mixed finite element spaces for this

problem.
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Chapter 1

Introduction

Finite element methods use polynomials to approximate the solution to boundary

value problems over some subdivision (mesh) of the domain. The traditional method,

called the h version, involves keeping the degree of the approximating polynomial

fixed, usually at a low level, and achieves accuracy by properly refining the mesh.

A more recent method is the p version, where the mesh is fixed and accuracy is

achieved by increasing the degree of the polynomial approximation. The hp version

is a combination of these two approaches.

Currently, there are several commercial finite element codes available or under

development including RASNA, PHLEX, STRESSCHECK, and IBM-POLYFEM that

offer these new p and hp methods. Moreover, codes well established in industry, such

as MSC/NASTRAN, are being equipped with p/hp technology.

Codes with hp capabilities allow the user to selectively employ a combination of h-
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refinement and p-refinement to achieve accuracy. For example, a highly refined mesh

with low p may be used near corners, while large elements with high p may be used

in the interior. The selection of h and p may also be done adaptively.

The increased flexibility afforded by such hp codes puts increased demands on the

underlying variational method and elements being used. The code must now be robust

with respect to both h-refinement and p-refinement. Various quantities of engineering

interest, in particular the displacements and stresses, should be calculated robustly

and optimally for the type of refinement chosen. The correct design of elements and

underlying method is therefore crucial.

For many materials and geometries, this level of robustness is easily realized by

using the standard finite element method (SFEM). However, in the case of isotropic

linear elasticity, if the material is almost incompressible (Poisson ratio v close to D,

the SFEM can lead to dilational (or Poisson ratio) locking (see e.g. [1, 6, 13, 25]).

Locking is when the rate of convergence decreases as v -+ . In severe cases the method

may not converge to the correct solution at all. This is an important exception since

almost incompressible materials are commonly used in industry. Natural rubber is

almost incompressible and materials that undergo plastic deformations may also be

considered almost incompressible [23]. Certain biological tissues are also considered

nearly incompressible. Also, the limiting case of v =1 reduces to Stokes problem,

which is obviously of great importance in fluid flow problems.

In the context of isotropic linear elasticity under conditions of plane strain, it
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is well known from computational experience that locking occurs in various finite

element schemes. For example, with v close to 0.5, the h version using piecewise

linear polynomials on triangular meshes produces a very poor approximation of the

displacements. However, in 1985, Scott and Vogelius (see [18] and [19]) showed that

the h version is locking free for both displacements and pressures 1 when polynomials

of degree k > 4 are used on certain triangular meshes. 2 They showed that locking

can also be avoided for k < 4 if very specialized meshes can be constructed. In 1992,

Babugka and Suri [1] characterized displacement locking for k < 4, which was shown

to depend not only on k but also on the mesh. They also showed that for two types

of rectangular elements, locking cannot be avoided for any k.

The p version has long been known to be locking-free for displacements. In 1983,

Vogelius [26] showed that for computing displacements on triangular meshes, the p

version converges uniformly in v, with optimal rate up to an arbitrary e > 0. Babugka

and Suri [1] removed the dependence on E in the locking-free rate of convergence for the

p version. They also showed this applies to parallelogram elements as well. However,

the references cited here do not guarantee the pressures will be locking free for the p

version (though results exist for the h version).

'We use the term "pressures" in place of stresses here because the quantity that suffers most due

to locking is the sum of the normal stresses, which reduces to a multiple of the pressure in Stokes

problem, i.e. in the limit v 1. (See equation(2.6).) We use the two terms interchangeably in the

sequel.
2 Since p will be used to denote pressure, we use k to denote polynomial degree.
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Mixed methods have also been used to avoid locking. In these methods, an aux-

iliary variable related to the stresses is introduced, and the solution is found as a

saddle point, rather than the minimum of the energy functional. Several mixed p-

type elements have been studied for the Stokes problem in the context of the spectral

element method[4]. If chosen appropriately they converge well in both displacements

and pressures. This is also true for h version mixed methods. The difficulty lies in

choosing the mixed method spaces correctly. As shown in [10], if the spaces are not

properly balanced, mixed methods may converge at less than optimal rates, or they

may may not converge at all. It is well known [6] that mixed method spaces must

satisfy an inf-sup (Babu~ka - Brezzi) condition to be stable and that choosing such

spaces can be difficult. More specifically, identifying spaces and proving that they are

both stable and nearly optimal can be difficult.

The problem of hp mixed methods has been addressed by Stenberg and Suri[20].

They identify sufficient conditions for selecting mixed method spaces on parallelogram

elements that produce nearly optimal and stable methods. Using these conditions, they

identify several mixed methods. They show that these mixed method elements are

optimal in both displacements and pressures for h-refinement, and that p-refinement

produces at worst O(k) locking in displacements and O(k2+') locking in pressures.

However, this study did not include any numerical verification of these methods.

In the p version, since the element size remains fixed, curved elements are essential

for practical problems. In [22], some experiments with curved elements showed that
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both the h and p versions of SFEM show increased locking in the displacements when

curved elements are used. For mixed h version methods, the Q2 - P0 element (see

[6]) is known to be stable for curved elements, as are some other elements.

Our goal in this dissertation is to identify finite element methods that compute both

displacements and stresses with uniform, near optimal accuracy for any v E [0, ),

when either h- or p-refinement is used. In addition, the methods should provide

nearly optimal performance on domains of practical interest, which include curvilinear

domains.

Several definitions and descriptions are needed throughout this dissertation; these

are given in Chapter 2. We describe the differential and variational forms of linear

elasticity and the associated finite element methods. We then define locking and related

issues.

In Chapter 3 we do a computational study of finite element methods on paral-

lelogram elements. We summarize the available theory mentioned above so we can

compare this with our computational results. We examine the mixed methods from

[20] to see how they perform numerically. In [20], it was stated that the inf - sup

constant for these methods decayed at a rate no worse than k- 2 - we validate this

numerically. The conditions used in [20] to define mixed methods indicate that a tra-

ditional spectral element, Qk _ Qk-2, is not an optimal choice. This is because the

polynomial space for pressures should be one degree less than the displacements, and

not two. We computationally compare this element with mixed methods from [20]
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and show that the Qk - Qk-2 element is indeed less than optimal. We also show that

for a model problem these methods work well for computing both displacements and

pressure. The SFEM is also compared with these mixed methods .

We turn our attention to straight sided triangular elements in Chapter 4. The

results in [26] imply that the divergence-stability constant for the p version SFEM

on triangular elements is k- " for some unknown a > 0. Since triangular elements

are used extensively in several hp commercial codes, we investigate their performance

computationally as v -+ 0.5. We find that the stresses can be extracted fairly accur-

ately, which suggests that a in the estimate from [26] is small. However, when we

evaluate curved triangular elements, we find that stress extraction is less satisfactory.

We therefore seek mixed methods for which a better characterization of the inf - sup

constant can be made. These mixed triangular elements are formulated to satisfy the

conditions outlined for parallelograms in [20]. One of these elements was analyzed in

[17], where a lower bound of k-3 was obtained on the inf- sup constant. We show

that this bound of k-3 is quite pessimistic in the range of k used in practice by (a)

computing the inf - sup constant numerically and (b) testing the rate of convergence

computationally for some test problems. Let us mention that the elements we con-

sider use discontinuous pressures. In the case of a continuous pressure space, Boillat

[5] showed that the divergence-stability constant behaves like k-2 l(ik) for the p

version based on Taylor-Hood elements.

Since curved elements are essential for p version meshes, in Chapter 5 we invest-
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igate locking on curved elements. We prove that on a single curved element, the

displacement error behaves like (k - a) - r where a depends on the mapping from a

reference element to the curvilinear element. Next, we consider the mixed methods

from [20] on curved elements and show how the stability constant can be estimated

for curvilinear meshes. We use this result to compute inf - sup constants for several

maps and show that they are stable for practical elements. We also formulate a new

curvilinear quadrilateral element and show that the inf-sup constant for this element

is bounded below by Ck- . This is the same bound as for parallelogram elements.

When the pressure is of interest, we show that the p version SFEM shows significant

deterioration when curved elements are used. We show experimentally that this effect

is worse when elements are curved at the boundary as opposed to having curved

interior edges. We also perform experiments to show that the mixed methods from

Chapters 3 and 4 are robust for a model problem.

As a final test, in Section 5.4, we use a benchmark problem from [25] to invest-

igate the performance of SFEM and a mixed method for computing point values of

stresses. In [25], Szabo, Babugka and Chayapathy showed that SFEM is ineffective for

computing point values of the sum of normal stress and proposed a post-processing

method to overcome this shortcoming. We demonstrate that curvilinear mixed method

elements can be used to accurately extract these point values.

Recently, No@ and Szabo [16] proposed a spatial formulation for geometrically

nonlinear elasticity. They showed that their SFEM works well on many problems when
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v is not close to 0.5. In Chapter 6, we reformulate this problem with a mixed method

and investigate locking of the standard and the mixed method. We find that while the

standard method produces erratic results when computing point values of stresses,

the mixed method eliminates the oscillations. This result mirrors that of Section 5.4

for a linear problem. Our results therefore suggest that the mixed methods discussed

here can be applied to eliminate locking in such non-linear problems as well.

The overall conclusion of this thesis is that the mixed methods investigated here

are excellent candidates for hp implementation when a robust code is desired.

Notation

In this dissertation, we shall denote the n-dimensional Euclidean space by R , with

x = (xI, x 2) or x = (x,y) and JxJ = (X 2 + y2)112 . We also denote the set of non-

negative integers by N. If Q is any one- or two-dimensional set, Q denotes its closure.

By Q we denote a domain in 1R2 with boundary 9Q. By H r (Q) we denote the Sobolev

space of functions on 9 with square integrable generalized derivatives of order < r

(r > 0) furnished with the norm

IluIU 1 H ( 2) I I U , 11 2,! 112

o<l<r

where a (o1, a2), Oi > 0, i = 1, 2 integers, ic= al + a2, and

D U 0c u
D'ud =:
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As usual, H ° (Q) = L2 (9). For functions u, v E L 2 (g), (u, v) will denote the usual

L 2 inner product. We denote

0L2(Q) = u C L 2 (Q): udx =}0

Also,

H 1 (Q) {u E H' (Q) : = 0 onOQ},

and we will further use the semi-norm notation

Ial=r

Throughout this dissertation, the letter C will be used to denote generic positive

constants, possibly not the same in each occurrence. Finally, K will refer to an

element in a finite element mesh Ch on a domain Q.



Chapter 2

Preliminaries

2.1 The Standard and Mixed Methods for Linear

Elasticity

The differential form of the equations of isotropic linear elasticity consists of three

relationships. They include the equilibrium equations

(2.1a) -oij,j = fi on

the constitutive relation for isotropic plane strain

(2.1b) o-ij = A divu Sjj + 2yzje (u),

and the deformation (strain) tensor

1
(2. c) ,j (u) -(ui,j + Uj,,),

2
10



11

which relates the displacement u = (U1, U2) to the strain. We let u = 0 on F0 and

ojjnj = gi on F 1 , where OQ F0 U 1 and F0 nF1 = . Let 0 < v < 0.5 be the Poisson

ratio and E the modulus of elasticity, and define the Lam6 constants

Ev E
(2.2) A ( v ()(- 2v)' = 2(1±+v)

Then the variational form of our problem is: Find u E V such that for all v E V,

(2.3) 2[ (- (u) , (v)) + A (div u, div v) = F (v),

where

F (v)=fffvdx+1gvds

and V = [H' (Q)] 2. For the case Fo = 0, we assume that F (RZ) = 0 for any rigid body

motion RZ. This ensures that (2.3) has a unique solution (modulo rigid body motions

- these are assumed eliminated in computations by suitable constraints).

Given a sequence of finite element subspaces {VN} , VN C V, we define the stand-

ard finite element approximation to (2.3) as: Find UN E VN such that for all v c VN,

(2.4) 2pi (E (UN) , E (v)) + A (div UN, div v) = F (v).

We identify the parameter N with the dimension of the subspace VN. Associated with

this standard method, we define the energy norm

(2.5) IlUIIE,, = (2plIE (u) . + AlIdiv (u)llo).
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Next, we describe the mixed formulation. We define the new independent unknown

(2.6) p= -A divu,

which is a multiple of the sum of the normal stresses, i.e. p = \t )(Ull + 6' 22)

2 (Ag) (+ -tO,,) 1. (As A -+ oc, this corresponds to the pressure in the limiting

Stokes equations.) Then (2.3) is written in the Herrmann variational form [9]: Find

(u, p) E V x W such that for all (v, q) E V x W,

(2.7) 2/t ( (u),e (v))- (p, divv)= F(v)

(2.8) (div u,q) + 1 (p,q) = 0

where W = L2 (Q).

For the mixed finite element method, we assume we are given a sequence of finite

element subspaces (VN x WN) C V x W and find (UN,PN) G (VN x WN) such that

(2.9) 2y (e (UN) , E (v)) - (pN, div v) = F (v)

(2.10) (div uN, q) + I (PN, q) = 0

for all (v, q) E VN x WN. The correct analog of the "energy norm" for mixed methods

should be

(2.11) IIUIIE,, = (21iI& (u) 112 + A-1 pIl2) 2.

As is well known [6], the accuracy of this method will not only depend upon

how well VN, WN approximate V, W respectively, but also the stability of the pair

'Note that o11 = o, and 0-22 = O-y.
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(VN, WN) (i.e., the inf-sup or Babu~ka-Brezzi condition satisfied by them). This is

made precise in the following.

Theorem 2.1 [6] Suppose (VN X WN) C (V X W) and let (u,p) satisfy (2.7) and

(2.8) and let (uN,PN) satisfy (2.9) and (2.10). If there exists /3 > 0 such that

I (q,div
(2.12) inf sup I>/

qEWvEVN [Iqjjojjv[1-

then

[U - UNiIl + iiP - PNIHO < C ( inf Ilu - viii + inf 1p-qjo!
- \VEVN qEWN /

2.2 Locking

Before we give the formal definitions relative to locking, we explain the practical

meaning by way of an example. In (2.4) we see that if A -+ oo, the term (divUN, divv)

must approach zero for the equation to have meaning. This forces div UN -+ 0. When

the finite element space is not rich enough to simultaneously satisfy this constraint

and approximate u well, we can expect poor performance. In linear elasticity, A -+ 00

has physical meaning; it is the case of nearly incompressible materials.

We illustrate what can happen as A -+ oc in Figure 2.1, which duplicates Figure 4.2.

This shows the results of using the h version SFEM to solve (2.4) on a uniform

triangular mesh. Recall that A is related to v by (2.3), and A -+ oo is equivalent to

v -+ -1 We see that when k = 2 the rate of convergence in energy norm changes from

O(h 2) when v = 0.3 to O(h) when v = 0.4999. In contrast, when k = 4, the energy
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norm error curves for v = 0.3 and 0.4999 are nearly identical. This deterioration in

the energy norm rate of convergence as v -+ 1 is known as locking. Notice that locking

also occurs when k 2 for the SNS (sum of normal stresses) relative error. When

v= 0.4999 the error curve actually increases as h decreases. Another important effect

is observed when k = 4 for the SNS error. The curves for v = 0.3 and 0.4999 have the

same slope, but the v = 0.4999 curve is shifted up relative to V = 0.3 curve. This shift

at a given level of refinement is referred to as the locking ratio. A desirable feature of

a finite element method is to be free of locking and to have a locking ratio near unity

over the range of discretizations of interest.

We now make these concepts more precise. We will need the following ingredients

for our definitions [22].

1. Solution space H,. We assume that our exact solutions s, lie in some sets

H, which characterize the smoothness of s,. For solutions s, of comparable
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smoothness we expect comparable results, so we will define locking with respect

to the family {H,}. We assume that H, is a norm on H, and define for any

B > 0, the set

H' = {s, G H, I IIIs1H,_< B}.

2. Error functional E,. Next, we assume we are interested in a certain functional

E, : s, -+ JR. We will be interested in the H1 norm of the displacement and

the L 2 norm of the sum of normal stresses. We should point out that locking

is closely coupled to the error functional. A method may be locking free in one

error measure but show significant locking in another.

3. Extension procedure 8. We assume there is a sequence of finite element spaces

8 {VN}. Then F gives an extension procedure, i.e. a rule on how to increase

the dimension N (e.g. by the h version, p version, etc.). We assume here that

N ranges over a set AF. As we shall see, locking is strongly dependent on E.

4. Parameter set S. Our parameter here is v, the Poisson ratio, which we assume

varies over the set S {v : 0 < v < 0.5}. (In computations, we will often take

S = {0.3, 0.4999}.

We first define locking ratio.

Definition 2.1 The function L(v, N), called the locking ratio for (v, N) c S x K[, is
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given by

(2.13) L(v, N) = supuVEH. E.(u. - uV)
inf~es. SUPwCEHBE - wN)

where S, = S n (-oc, a] for some a < 0.5 such that S, # 0.

Obviously, L also depends on H,, E,, £ and S,. It compares the performance of

the method at Poisson ratio v to the best possible performance for reasonable values

of v, characterized by v < a.

Let us now present the definition of locking ([2], [1]), for the case that a > 0.

Definition 2.2 The extension procedure S is locking free for v E [0, 0.5), with respect

to the solution sets H,, and error measures E,, if and only if

limsup( sup L(v,N)) =C < 00.
N-*+o \vE[o,o.5)

E shows locking of order f(N) if and only if

0 < lim sup (sup L(v N)- = <00
N-coc (V ()

where f (N) -+ co as N -+ o .

The denominator in (2.13) can be replaced by Fo(N), the asymptotic rate of best

approximation in H'(Q) of functions in Hk(Q) by functions in VN,

F0(N)= sup inf 11w -vi, ,
wE(Hk)B vEVN

which represents the smallest error which could be achieved using VN to approximate

the most unfavorable w in (Hk)B. For example, for the h version, Fo(N) = O(h") -
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O(N--) where p = min{k - 1,p}, while for the p version, Fo(N) = O(p - (k- 1))

O(N- Y2 ).

For the standard method, we are interested in two error functionals:

1. The H 1 norm of the displacement error (which is equivalent to the energy norm

(2.5)).

2. The L 2 norm of the error in the sum of normal stresses, SNS (which is computed

by differentiating the displacement).

For the mixed method, we use the same error measures, but we compute the energy

norm using (2.11) and we compute SNS directly, since it is a scalar multiple of the

independent variable p.



Chapter 3

Parallelogram Elements

We describe the SFEM and several mixed methods [20] on parallelogram elements. We

show experimentally that for these mixed methods the inf - sup constant does indeed

decay like k-2. We then summarize the rates of convergence for these methods. For

a model problem, we show that these methods are locking free for computing both

displacements and pressure. We also compare the SFEM with these mixed methods.

3.1 Approximation Spaces

3.1.1 General conditions for stability and approximability

We begin with the notation and definitions needed to define the finite element spaces

we will use. We do this here not only for parallelogram elements, but for the other

elements considered in this thesis as well.

18
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Assume that a sequence of meshes {Ch} consisting of (curvilinear) quadrilaterals

and/or triangles is defined on Q, which is regular in the following sense [7]:

i) The intersection of two elements in Ch consists of one point (a vertex), one entire

common edge or the empty set,

ii) There exists a constant a such that

VK C Ch, hK < O

P0K

Here, hK is the diameter of K and pK is the diameter of the largest inscribed ball in K.

Ch does not have to be quasi-uniform (see Remark 3.3 below). For K E Ch, we denote

K to be the smooth invertible mapping from the reference element K onto K, where

k = [-1,112 when K is a quadrilateral and k= {(x,y): -1 < x < 1, -1 < y < -x}

when K is a triangle. (Further restrictions on .FK will be imposed in the chapter on

curvilinear elements.)

Let Vk(K) and Wk(K) be, respectively, the spaces for u and p on K, consisting

of polynomials of degree related to k. Define for any K C Ch,

(3.1) Vk (K) = {V r0 - 1Frj E Vk (k)

Wk(K) = {p o ' :3E Wk(k)}.

Then with N = N(h, k), the finite element spaces are defined as

(3.2) VN {vEV : VIKEVk(K) VKECh},

WN {pE W: pIK E Wk(K) VKECh},
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where V and W are the solution spaces for (2.7) and (2.8). We will denote by Pk(K)

the set of polynomials of total degree k on K, while Qk(K) will be the set of poly-

nomials of degree k in each variable. The serendipity or trunk space Q(k) will be

span {Pk(k), xky, xyk }.

As noted earlier, the mixed method spaces we consider are based on [20]. In

that paper, six conditions are given for selecting mixed method spaces Vk, Wk on

parallelogram elements.1 These conditions motivate the choice of the mixed finite

element spaces, and are central to arguments developed in later chapters. Since we are

interested in extending the mixed methods of [20] to more general meshes, (including

straight sided triangular and curvilinear triangular and quadrilateral meshes), we will

list a more general form of two of these conditions.

The first condition in [20] is that identical subspaces are used for both displacement

components, i.e.,

(Al) Vk(k) = [Vk(k)] 2.

Let VkO(k) = Vk(K) nl (k) denote the set of internal shape functions used for

all components of the displacement, so that Vk(k)= Vk(k) n [H01 (/)] 2 [Vk(K)] 2 .

We note that there exists a space Xk(k) such that

V "(k) = {vlv= bftw, w E Xk(k)},

where bk is the lowest degree "bubble function" on /, the reference element (square

1The conditions from [20] are given for both IR2 and IR'. We restrict our presentation to I 2.
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or triangle). The second condition is that the space for the pressure satisfies the

following.

(A2) Vq E [Xk(k)]2 V q E Wk(k).

Due to the definitions of the spaces Vk and Xk(k), we can define a weighted L 2

projection Tk H1(k) -+ Vk°(k) by

(3.3) (v - Tkv, w)Ok =0 Vw C Xk(k).

The third condition is that the projection operator Tk satisfies

(A3) H1kuli,k < Ck-llulli,k for some - > 0.

Note that in [20], instead of a general , condition (A3) is stated with -y , since

for parallelogram elements considered there, this can be proven.

Conditions (A1)-(A3) give a local stability condition for any element K for which

.FK is linear. The following lemma follows from Lemma 5.1 of [20].

Lemma 3.1 Let the spaces Vk(k), Wk(k) satisfy conditions (A1)-(AS). Let K -

.FK(Ix), where FK is an affine mapping. Then for every q* C Wk(K) n L2(K) there

exists v* E Vk(K) n [HI(K)]2 such that

(3.4) (divv*,q*)K > Clk- lq*112, and IV*11,K < C2q*II0,/,

where C1, C2 are positive constants independent of K, h, k and q*.

Note that -y in (3.4) may be different over different K. In this case, the value chosen

in (3.4) is the maximum.
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Remark 3.1 Let us remark that if (Al) and (A2) hold, then we can always define

Tk by (3.3). For Vkl(K) # 0, we will always have

H17kulHl,k <- C(k)IluIKi,k

for some C(k) < co. Then Lemma 3.1 holds with k-  replaced by (C(k))- 1 . Hence,

(Al), (A2) are sufficient to ensure a unique solution to (2.9)-(2.10).

As we shall see in later chapters, the best theoretical estimate available for -

in (A3) is pessimistic for triangular elements, and unavailable for most curvilinear

elements. In order to investigate such elements, we will estimate the local inf-sup con-

dition (3.4) computationally. Once this local inf-sup constant has been estimated for

all elements in a given mesh, the remaining theory developed in [20] is still applicable.

We therefore formulate the following alternative condition to (A1)-(A3).

(LS) For every K C Ch, given q* E Wk(K) nl L(K), there exists v* E Vk(K) fl

[H(K)]2 such that (3.4) holds.

Let q E WN be arbitrary and write q = + q* with q being the L2 projection of q

onto the space of piecewise constants:

WN={qEWN:qKEPo(K) VKCCh}.

To have a global condition we need the following.

(A4) The pair (VN, WN) is stable,
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where VN = {v" VIK o a F, ' for some E E 2(K) VK E Ch}, where E 2(K)

[Q2(k)] 2 if kis the reference square and E 2(k) = [7P2(k)] 2 if kis the reference

triangle. Then we have the following, see [20, Theorem 5.1].

Theorem 3.1 Let the spaces VN, WN satisfy conditions (A1)-(A4) or (LS),(A4).

Then

(3.5) sup (div v, q) > Ck-'llqjjo Vq E WN,

VEVN{O} VI WN,

where the constant C is independent of h, k and q.

The proof is similar to that of Theorem 5.2.

Finally, we will take the spaces Vk(K) and Wk(k) to contain polynomials of degree

k and k - 1 - n, respectively. Note that in order to get the optimal convergence rate

in both h and k, we require n = 0. More precisely, we need the following conditions.

(A5) [Qk'(k)]2 C Vk(k) if / is the reference square,

[Tpk(k )]2 C Vk(k) if k is the reference triangle.

(A6) Pk--.(k) C Wk(k), n > 0.

We will assume that k > 2, i.e. we exclude the case with piecewise constant pressure.

3.1.2 Choice of Parallelogram Spaces

We now define our methods by fixing the choices of Vk(k) and Wk(k), when k is a

parallelogram. We define the polynomial spaces
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Qk(K), Q*(K) C Qk(K) by

Qk(Ii) -Qik4k) flPk+2 (k), and

Q*(k) Qk(k) augmented by all bubble functions of degree k + 1, i.e. Qk(k)

together with functions in Qk+1(!Z) that vanish on aK.

We then define the following methods[20]:

MQI: Vk(!):= [Q)k(!k)] 2 , Wk(k) = Pk-,(!k).

MQ2: Vk(k) = [Qk(k)] 2, Wk(k)= Pk-l(k).

MQ3: Vk(k )= [Q'+ 2(k)]2, Wk(k) = Pk-l(!).

MQ4: Vk(!k)= [Q*(k)] , Wk(k) = Qkl(!k).

MQ5: Vk(k)= [Qk(k)]2, Wk(k)= Qk- 2(k).

MQ6: Vk(k)= [Qk(k)]2, Wk(k) =Qk- 2(k) U Pk-l(k).

In addition, we define

The mixed method spaces MQ1 and MQ5 are illustrated for k 5 in Figure 3.1,

where spanning sets for W15(k) and one component of v 5(k) are shown.

We note that given Wk(k) = Pk-l(k) the minimal displacement space satisfying

(A2) is [Qk(K!)] 2 , the displacement space for MQ1. Comparing MQ2 or MQ3 with

MQ1, we see that the only difference is that this minimal space has been replaced by

a larger space. This increases the number of degrees of freedom without increasing
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MQ1 MQ5
V5  V5

5 05 0 0 0 0 0 0

0 *0 0 0 0 0 0

y y
y 0e 0 0 0 0 0

* 0 0 01 0 0

0 x 5 0 x 5

Figure 3.1: Polynomial spaces for MQ1 and MQ5 when k = 5.

the asymptotic approximation rate. (For instance, Qk(k) has dimension (k + 1)2

compared to (k2 + 7k)/2 for Qk(k).)

On the other hand, MQ6 can be regarded as an optimized version of MQ5,

where Vk(k) has been kept fixed and the maximal space chosen for Wk(K). This

only involves adding two extra degrees of freedom per element, but, as Theorem

3.4 below shows, leads to an extra order in the asymptotic rate of h convergence.

Similarly, in MQ4, the minimal space has been selected for Vk(k) with the choice

Wk(K) = Qk-l(K), which again leads to an improved error estimate. (Note that

Q((K) contains extra bubble functions compared to Qk(K), but condensing out

bubble functions is relatively cheap, see [24].)

We note that for SQ, MQ1-2,4-6, the displacement space has been chosen to satisfy

[Qlk)], C Vk(k), [Q,+l(k!)] 2'
V Vk(k).
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This ensures that all the displacement spaces have the same O(hk) asymptotic ap-

proximability in the H'(Q) norm with respect to the h version, thus facilitating the

easy comparison of the various methods. While MQ3 does not have this property,

it is useful for comparisons with SQ, since their displacement spaces are directly

comparable.

The following corollary follows from Theorem 3.1 applied to parallelograms and

shows that the above choices of spaces lead to mixed methods that satisfy a common

inf-sup condition.

Corollary 3.1 [20] Let the mappings FK be affine, i.e. the elements are all parallel-

ograms. For (VN, WN) defined as in MQ1-6 above,

(3.6) inf sup (q, div v) =PN > Ck,
qEWN vEVN J1qjjo jvj 1 - -

where the constant C is independent of h and k.

Corollary 3.1 shows that the above combinations are stable with respect to h as h -+ 0.

Moreover, the spaces are almost stable with respect to k as k -+ oc, with the stability

constant behaving like Ck- . (This loss is unavoidable, at least for MQ5, [4]).

3.2 Numerical Investigation of Inf-Sup Condition

For a given mixed method, we want to verify computationally that inequality (3.6)

holds and since it is a lower bound, see if the bound is approached. We proceed
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as in [10]. Let {i}ml be a basis for WN(Q) and {4'}= 1 be a basis for VN(Q).

Then q E WN(Q) can be written q = J:T 1 ,i~i and v E VN(Q) can be written

v = 1 i c4i. Then

m n

(q, div v) = (S Aoi5, 5 a.div Oj) = AT(qi, div Oj)a = ATBa,
il j=l

where B [(€idiv4' )] is m x n, A is m x I and a is n x 1. Also

m m

IIqI = (E ,5oi, E Ajqj) = _\T(0,, 0j) A = \TDA,
i=--1 j=l

where D --[(¢iqj)] is m x m. And

n n n n n n

IIVI12 = (5O4' , O.j4j) "±- (5 O4i2 , 1 ,5a 3 3 , 1 ) + (C O~i, 2 , 4 C,2 ) Tco
1 i :l i1 j--+(1 i= ,1 j'O 2

where

C = [( i, 4j) + ( i,1, 4'j,) + ('i,2, 'j,2)]

is n x n. The discrete inf - sup constant PN in (3.6) can then be characterized as

ATBa
min max \ PN > 0.

XER m aE In (,T DA) I(CkTCaC)1
A50 a0o

Since C and D are symmetric positive definite, we let

A. 1

y=D2,\, X=Ca.

Then, the inf - sup constant PN can be written

yTD-:BC- x

PN = min max Y D .
YER"R o

Y540 X54
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For a given y, the maximum over x occurs when yTD-2BC-2 and x are colinear, or

C-2BTD-y = X.

Then

,YyTD- BC-1B TD-ly
PN HI rai 1 1YPR- (yTy) (-y(yTD- BC-1BTD-Ty)) 2

Y540

and

2 yTD- BC-1BTD- y
PN = Min TYERm y y

y#O

which is a Rayleigh quotient. This is minimized when

1 12

D-2BC-'BTD-2 Y. =2Nr~~ PNiYm

or

(3.7) BC-1BTum = P2DUm

and p is the smallest positive generalized eigenvalue of (BC-1BT, D). To verify

(3.6) for a given mixed method we construct the matrices B, C and D and solve (3.7)

for the minimum positive eigenvalue.

In Figure 3.2, we show the results of numerically estimating the inf-sup constant PN

for MQ1 and MQ5. The finite element spaces are defined on a square of side 2, with

four equal square elements of side 1 (with natural boundary conditions). The O(k-1)

deterioration is clearly observed for both elements, showing that the stability of MQ1

and MQ5 is similar. For the given mesh, the inf-sup constant for MQ5 is slightly larger,

about 1.09 times the size of the inf-sup constant for MQ1. Similar computations were
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0
10

0 - MQ5
* - M0I

0

CL slope =-1/2

C,)

10
k 3, ..., 10

Figure 3.2: The inf-sup constant for MQ and MQ5

performed in [14] where they considered the homogeneous Dirichlet problem. The

decay rate they found was less than what we show here. When comparing the actual

magnitude, their inf-sup constant estimates are significantly less than our estimates,

which is to be expected since the displacement space for the Dirichlet problem is a

subspace of the displacement space of the Neumann problem.

3.3 Asymptotic Convergence Rates

We note that in SQ, the space Vk(k) = [Q(k)]2 is the minimal conforming space

of polynomials of degree < k. This means that the asymptotic convergence rate in
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terms of the H(Q) norm for SQ is

(3.8) IIu - UNI11 < C1 (v) hmin(kr-1)k - (r-1 ) IlUIr,

assuming the solution u C H r (Q), r > 1. This is the asymptotic rate of best approx-

imation referred to in Section 2.2. A method that produces this rate for all v e [E, 1)

is locking-free. The same rate will also be observed in the energy norm (2.5) of the

error

Iu - UNIIE,, = (2,!1k (u - UN) 112 + Alldiv (u - UN)Ilo) 1

which is equivalent to the H'() norm for v bounded away from 1/2. Also, defining

for SQ

(3.9) PN = -A div UN,

we see that

(3.10) Ilip - PN110 < C2 (v) hmin(kr-1)k (r-1 ) IlUUIr

The upper bound in (3.8),(3.10) represents the optimal asymptotic convergence

rate for polynomials of degree k. Unfortunately, both constants C, and 02 blow up as

v -1 i (A -+ oc), so that this rate is not uniform if v is allowed to vary in [0, 1). The

following theorem gives the best possible estimate independent of v for the special

case of a uniform rectangular mesh.

Theorem 3.2 [1] Let u E Hr (Q), r > 1, be the solution of (2.3) and let UN be the

solution obtained by SQ, using parallelogram elements. Then there exists a constant
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C independent of u, h, k and v C [0, 1) such that

(3.11) 11U - UN111 < Chmin(k-ar-1)k- (r - l) IIU11r

where a = 1 for k = 1, 2 and a 2 for k > 2. Moreover, this is the sharpest estimate

that is uniform in v for v E [0, 2).

The same estimate in equation (3.11) also holds in the energy norm defined by (2.5).

For results on other meshes, see [1].

We see from the above theorem that if the h version is used, the rate deteriorates

by 0 (h 2) as v -+ 1 (0 (h) if k 1,2). In terms of Definition 2.2 h-refinement for SQ

has 0 (h - 2) locking for k > 2 and 0 (h - ') locking for k = 1,2 in the displacement.

For the p version, there is no deterioration in the asymptotic convergence rate, i.e.,

p-refinement for SQ is locking-free in the displacements in the sense of Definition 2.2.

Remark 3.2 The statement that there is no locking with the p version for displace-

ments is somewhat misleading. Even though there is no deterioration in the asymp-

totic rate of convergence, the actual observed error does deteriorate, particularly with

curved elements. In other words, the locking ratios defined in Definition 2.1 increase.

See [22] and Chapter 5.

Let us mention that if in SQ we take Vk(K) = [Qk(k)] 2 instead, then a = 1 for

all k in (3.11), so that this choice has 0 (h) locking for h-refinement for all k.

Turning now to the mixed methods, we have the following theorems, which follow

from Theorem 3.1.
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Theorem 3.3 [20] Let (u,p) the solution of (2.7)-(2.8) be in Hr (Q2) X Hr- 1 (Q),

r > 1. Let (uN,PN) be the solution of MQ5 solving equations (2.9)-(2.10) with paral-

lelogram elements. Then for any € > 0, there exists a constant C, independent of u,

h, k and v E [0, 1) such that

(3.12) Iu - UNII1 < C hmi(k-ir')k - (r- 1-E) (IIUllr + IIPl1r-j),

(3.13) liP - pN]]0 Cehmin(k-lr-1)(r--e) (llir + IIP]r-i)

Theorem 3.4 [20] Let (u,p) be as in Theorem 3.3 and (uN,pN) be the solution of

MQ1-4,6 solving equations (2.9)-(2.10) with parallelogram elements. Then for any

6 > O, there exists a constant C, independent of u, h, k and v E [0, 1) such that

(3.14) 11u - UN[l1 < Cehmin(kr-1)k
-

(r
- l -

e) (][Ulir + IPI1r-1) ,

(3.15) 1p - PN1o < Crhmin(kr - 1)k- (r- 2 - ) (11U11r + - 1-I)

From the above, we observe that in terms of the p version, all the mixed methods

are (like SQ) asymptotically free of locking in displacement (except for an 0 (kE)

factor, which comes in due to a technicality in the proof). In terms of the h version,

MQ5 shows an 0 (h - 1 ) loss in the displacement rate of convergence when compared to

the optimal estimate (3.8) (for r > k + 1). Similarly, MQ3 shows an O(h- 2 ) loss in the

displacement rate, since with Q'+ 2 elements, we would expect O(hk+2) convergence in

the displacements for smooth solutions. However, these losses are not manifestations

of locking, since the loss is observed for any vi. Rather, this is an approximability

problem, since the space for PN should be of one degree lower than that for UN (and
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not two degrees lower). Hence, all these methods are free of locking in displacement

for h-refinement, and, in addition, MQ1,2,4,6 are correctly balanced.

Turning to the stresses, for the h version, the conclusions for locking are the same

as those for displacements. For the p version, if we compare (3.13), (3.15) with the

optimal rate in (3.10), we see a loss of O(k +'). Hence, we conclude that p-refinement

gives rise to stress locking of order O(k-(2+6)) for all the above mixed methods. As

we see in the next section, this is a rather mild amount of locking, and does not show

up in the model problems for the practical ranges of k used by us, giving a method

that is essentially locking-free.

Let us mention that (3.12),(3.14) will not hold with IU-UNI1 replaced by the error

IU-UNII E, defined by (2.5). The correct analog of the "energy norm error" for mixed

methods is given in (2.11). With this definition of the energy norm, (3.12),(3.14) will

hold once again.

Remark 3.3 With proper mesh-degree selection, exponential rates of convergence

may be obtained using the hp version. The estimates in Theorems 3.2 - 3.4 would

then be improved, reflecting these exponential rates. Exponential convergence requires

highly refined meshes in parts of the domain (e.g. at corners). Such meshes may be

constructed even if the elements are all parallelograms by using "hanging nodes." See

[11] for a discussion of a fully adaptive hp method (with hanging nodes) for the Stokes

problem, based on MQ4. Also, see [17] where the hp-FEM is constructed by using both

triangular and parallelogram elements to give such exponential rates of convergence
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on polygonal domains.

Remark 3.4 The mixed methods described here may be generalized to three-dimensional

parallelepiped elements, see [20]. The best stability constant in the 3-d case is Ck-'.

Remark 3.5 In [20], Theorems 3.1, 3.3 and 3.4 above have actually been established

for the more restrictive case of homogeneous Dirichlet boundary conditions. In that

case, the spaces for the displacements are further restricted, so we can expect the lock-

ing to be more severe. In subsequent sections, it is shown that the MFEMs perform

much better than SFEM with respect to locking, using test problems involving Neu-

mann (traction) boundary conditions. For the case of a clamped boundary, we expect

the difference in performance to be even more significant.

3.4 Numerical Experiments

In this section, we investigate the computational performance of the methods SQ,

MQ1-5, both with h- and p-refinement. Our results support the theoretical evidence

in Section 3.3, i.e. that only appropriately balanced mixed methods provide near-

optimal performance both for displacements and stresses calculated either by h- or

p-refinement. Although we did not perform computations with MQ6, we expect its

numerical behavior to be similar to MQ1-4, as suggested by Theorems 3.1 and 3.4.
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3.4.1 Model Problem

In our numerical experiments, we use a model problem that we refer to as SING,

having reference to the movable singularity in the displacement u. For this problem,

we solve (2.4) or (2.9)- (2.10) on Q = {(x,y): -1 < x < 1, -1 < y < 1}, with f 0

and tractions g specified on the boundary by

g(x,y) (x -x) (Y - Yo) [(Y - Y)2 - (x - xo)2]
[(x - X0 )2 + (y - yo)2] 3

4 (x - X0 )2 [3 (y - yo) 2 - (x -o)
2]

[(5 - X0 ) 2 + (y - yo)2] 3

9 2 (XY) = 8 (x- Xo) (Y- yo) [(y- yo) 2 
- (x - Xo)2] nj

[(x- Xo) 2 + (y - yo)213

4 (y- yo) 2 [(Y- yo) 2 - 3 (x Xo)2]

[(x - xo)2 + (Y - yo)2] 3

Here (ni, n2) is the outward unit normal on aQ. The exact solution is given by [15]

(3.16) u, (X, Y) (x - xo) [(A + 2y) (x - Xo) 2 - A (y - yo) 2 1

/_ (A + p) [(x - XO) 2 + (y yo)2]2

(3.17) U2 (X, Y) (y - yo) [A (x - xo)2 _ (A + 2/) (y - yo)2 ]
(3.17 + ((,Y _ =)

It (A + P) [(x- xo)2 + (- o)21

(from which the stresses can be calculated). In the above, A and Y are defined in

terms of E and v by (2.2). We take E 1 and let v vary.

As seen in (3.16) - (3.17) the solution has a movable singularity at (xo, yo). By

taking (xo, yo) = (-2, -2), we get the case of a smooth solution. We also consider

the case (xo, yo) - (-1.1, -1.1), to see how well these methods handle a near-singular

solution.
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3.4.2 Computational Considerations

Implementation of our mixed method is relatively easy. Since no inter-element con-

tinuity is imposed on PN, we simply solve (2.10) locally over each element for PN in

terms of UN, and then substitute this in (2.9). This gives a positive definite system

for UN, which can then be solved by a direct solver. For the range of v's tested

(0.3 < v < 0.4999), round-off error was not a problem.

The MFEMs do cost more than the SFEMs to compute. This increase is due to

the pressure variable, which increases the size of the element stiffness matrix. For

example, for MQ1 the increased cost ranges from 36% when k = 2 to 75% when

k = 10, up to 125% as k -+ co. However, the overall cost of the two methods is more

difficult to compare. Since the pressures are discontinuous, they can be condensed

out on each element. Similarly, if a frontal solver is used[24], the pressure degrees

of freedom do not contribute to the size of the front. Another factor is the size of

the problem. For problems with few elements, the MFEM cost may be significant.

But when solving large problems, the cost of solving the global system, which is the

same for MFEM and SFEM, may dominate. On a parallel machine, cost comparisons

become even less obvious.

For these reasons, rather than comparing the error obtained via different methods

with N the sum of dim(VN) and dim(WN), we compare it with n = dim(VN), which

represents the total number of variables in the global system to be solved. Of course,

our choice n is just one possible (incomplete) measure of the actual cost, which is very
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implementation dependent. The SFEM will definitely be cheaper when locking is not

an issue. The MFEMs are more robust, but are cheaper only when v is sufficiently

close to 0.5.

The mesh Ch is a uniform partition of 9 into square elements of side h. Then it is

easily seen that the number of degrees of freedom N satisfies

N (h, k) -- Ch 2 k2,

so that the asymptotic rates of Section 3.2 could be re-written (for comparison) in

terms of N, using the equivalence h -- CN- 1/ 2 for h-refinement (k fixed) and k- '

CN - 1/ 2 for p-refinement (h fixed).

3.4.3 Computational Convergence Results

Comparison of SQ and MQ1 - h version

Figures 3.3 - 3.5 show the results of h-refinement with SQ and MQ1 (smooth solution).

The number of elements ranges from 1 to 64. We have plotted the percentage relative

errors in the energy norm of the displacement (defined by (2.5) and (2.11)), and the L2

norm of the sum of the normal stresses (SNS), vs n, the number of degrees of freedom.

(Recall that the energy norm satisfies the same error estimate as the H1 norm of the

displacement.) On these h-refinement plots "rate" is the exponent of h, i.e. the rate

of convergence.

For SQ, the energy norm error shows good correlation with the asymptotic rates

predicted in Equation 3.8 - the optimal rate of 0 (hk) for k = 2,3,4 is observed
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when v 0.3, while the "locked" rate of 0 (h k-1) for k =2, 3 is observed when

v =0.4999. When k =4, we observe the predicted locking of order 0(h-') on this

model problem. The energy norm locking ratios 2 (LE) in Table 3.4.3 emphasize that

the locking ratio increases gradually as N increases (h decreases). In contrast, MQ1

'The locking ratio LE (0.4999, N) is the observed error at v = 0.4999 divided by the observed

error at v =0.3.
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exhibits the asymptotic rate of best approximation in energy norm for k = 2,3 and 4

and is locking-free. The locking ratios (not shown) remain bounded by 1.15.
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Figure 3.5: SQ vs MQ1, h-refinement, Smooth solution, k = 4.

For SQ, the deterioration in SNS is worse, since there is no observed convergence

for k = 2 when v = 0.4999. The error is just beginning to decrease for k = 3 in

the range of h we use. When k = 4, SQ begins to converge for stresses with a rate

of 0 (h' 4). The stress locking ratios a (Ls) in Table 3.4.3 show dramatic increase

with N. On the other hand, we see that MQ1 produces the same near-optimal results

for both , = 0.3 and 0.4999. The stress locking ratios (not shown for MQ1) remain

bounded by 1.04.
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N

k = 2 13 39 77 127 189 263 349 447 557 679

LE(0.4999, N) 1.0 1.7 2.6 3.5 4.0 5.3 6.2 7.0 7.8 8.7

Ls(0.4999, N) 1.2 10.3 20.0 33.6 50.9 71.7 95.8 122.9 152.5 184.5

N

k = 3 21 63 125 207 309 431 573 735 917 1119

LE(0.4999, N) 1.5 1.8 2.6 3.8 5.4 7.2 8.9 10.5 11.8 13.0

Ls(0.4999, N) 5.4 11.9 23.4 52.1 106.4 188.4 290.2 396.7 494.8 578.7

N

k = 4 31 95 191 319 479 671 895 1151 1439 1759

LE(0.4999, N) 1.3 1.7 2.5 3.6 4.9 6.2 7.3 8.4 9.3 10.2

Ls(0.4999, N) 9.3 12.3 40.4 100.0 189.6 293.7 394.1 481.2 554.7 618.0

Table 3.1: Locking Ratios, SQ, h-refinement, k = 2, 3, 4.
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Figure 3.6: SQ vs MQ1, p-refinement, Smooth solution.
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Comparison of SQ and MQ1 - p version

Next, in Figures 3.6 and 3.7 we see the performance of SQ and MQ1 with p -refinement

on a four element mesh. We observe no locking with either method where the displace-

ment is concerned, since the curves for v = 0.3 and v = 0.4999 are very close. (Here,

and for all mixed method calculations, the "energy" norm used is the one defined in

(2.11).) If one looks at the stresses for the smooth solution, there is a marked de-

crease in accuracy with SQ when we go from v = 0.3 to v = 0.4999. This decrease in

accuracy is even more apparent for the unsmooth solution, see Table 3.4.3
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Figure 3.7: SQ vs MQ1, p-refinement, Unsmooth solution.

On the other hand, MQ1 shows no change as v -4 0.5, either in the smooth or

non-smooth case. Hence, no locking can be seen in these results for MQ1, not even

the 0 (k 1/2+e) predicted by Theorem 3.4. The results with the other mixed methods

'The locking ratio Ls(0.4999, N) is the observed error at V = 0.4999 divided by the observed

error at v = 0.3.
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N

Smooth 39 63 95 135 183 239 303 375 455 543

LE (0.4999, N) 1.7 1.8 1.7 1.4 1.1 1.2 1.2 1.1 1.1 1.1

Ls(0.4999, N) 10.3 11.9 12.3 15.3 8.7 7.1 7.9 5.6 3.5 2.6

N

Unsmooth 39 63 95 135 183 239 303 375 455 543

LE (0.4 999, N) 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1

Ls (0.4999, N) 1.3 5.1 7.1 8.9 7.9 6.7 5.6 4.3 3.2 2.5

Table 3.2: Locking Ratios, SQ, p-refinement, Smooth, Unsmooth.

are similar, showing that stresses are accurately recovered by the p version mixed

method. (Let us remark, however, that even though the 0 (k 1/ 2+e) loss is not seen

for this problem, it could appear in other problems, depending upon the nature of the

exact solution.)

Comparison of MQ1-5 - h- and p-refinement

Next, we compare MQ1-5, by seeing how well they perform with h-refinement. As

mentioned in the introduction, for an hp code, optimality with respect to h as well is

highly desirable. In Figures 3.8 and 3.9, we plot the displacement and stress errors

of MQ1-5 when the solution is smooth, for k = 2 and 4. These have been plotted for

0.4999 (the figures do not change appreciably for v closer to 1 or for v =0.3).
2

We see clearly the superiority of MQ1-4, which have 0(h k) convergence in both
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energy norm and SNS, which is the optimal rate for MQl,2,4,5. The reason MQ5

gives a sub-optimal rate (O(h kl)) is not due to locking, since the rate is the same for

v=0.3 and v =0.4999. Rather, it is due to the polynomial degree used for PN being

2 degrees lower than that for UN, i.e. it is an approximability issue. One could, of

course, compare MQ1-4 with degree k to MQ5 with degree k + 1, but then the optimal
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rate expected for the displacements from MQ5 would be one order higher, and would

still not be attained. Note that the optimal rate for MQ3 is O(hk+2 ) convergence. It

fails to achieve this rate for the same reason MQ5 does, because the pressure spaces

is 3 degrees lower than the displacement space. This emphasizes the importance

of considering both stability and approximability when constructing mixed method

spaces.
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Figure 3.10: MQ1-5, p-refinement, Smooth solution.

For completeness, we also compare MQ1-5 under p-refinement (for four elements).

These results (Figures 3.10 and 3.11) show the mixed methods perform about equally

well. Since we have not taken dim(WN) into account in the comparisons, the method

with the minimal degrees of freedom for WN, i.e. MQ1, may be preferable overall.
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Chapter 4

Straight-Sided Triangular Elements

From the results in [26], it follows that the inf - sup constant for the p version SFEM

on triangular elements is O(k- ') for some unknown -. Many commercial codes rely

heavily on automatic mesh generation using triangular elements. For these codes to

have reliable hp capability, triangular elements with known stability characteristics

are necessary. In this chapter, we look at mixed method triangular elements for which

a better characterization of stability can be made. These mixed triangular elements

are based on conditions (Al)-(A6) outlined in Chapter 3. The pair of spaces that

was analyzed by Schwab and Suri [17] satisfy these conditions. They showed that the

inf -sup constant is no worse than Ck - 3. We provide evidence that the inf - sup

constant for this mixed triangular element is better by computing it for a single

element for a practical range of k, and then invoking Theorem 3.1. We also propose

and investigate an optimized version of this element. We then perform experiments on

46
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triangular meshes with both SFEM and our mixed triangular elements and compare

their performance for a model problem.

4.1 Spaces and Stability

As in section 3.1, we use the same definition of VN and WN, with the exception that

now the reference element / = {(x, y): 0 < x < 1, 0 < y < 1 - x} is a triangle. We

use conditions (A1)-(A6) (see section 3.1) to select displacement and pressure spaces

for two mixed triangular elements.

We identify the first triangular element as MT1, and begin by letting Vk(k) =

[Pk(k)]2  Then (Al) is satisfied and (A2) requires Wk(k) C Pk- 2 (K), so we let

Wk(K) = Pk- 2(K). Condition (A3) is verified in [17] for these spaces with -Y = 3.

Condition (A4) is satisfied if P2(K) C Vk(K). Finally, (A5) is satisfied and (A6)

is satisfied with n = 1. We point out that n > 1 in (A6) implies less than optimal

approximation. Thus we define

MT1: Vk(k) = [Pk(k)]2, Wk(IX) = Tk_2(k),

and expect MT1 to have inf-sup constant no worse than O(k- ') and less than optimal

approximability.

Another approach is to set Wk(k) = Pk-i(K) and determine the smallest space

Vk(K) that satisfies conditions (Al) - (A6). The lowest order triangular bubble func-

tion bk E P3 (k), and Vq E Pki(k) = Wk(k) we have 7q E Pk_2(k). Then (A2)
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requires that {bubble functions in 5Pk+l(k)} C Vk(k). This leads to the following

mixed triangular element

MT2: Vk(K) = [Pk(K) U {Pk+l(K) bubble functions}] 2,

Wk(K) = Pkl(K).

The analysis of local stability for MT1 also applies to MT2, so the inf-sup constant

will be no worse than O(k-3 ). Note that in contrast to MT1, the polynomial degree

of the displacement and pressure spaces for MT2 differs by only 1, so MT2 should

have optimal approximability.

For SFEM, we define

ST: Vk(K)= Pk(K).

This is equivalent to SQ, since for a given k, both SQ and ST are the minimal space of

polynomials of degree k that produces C O continuity on a regular mesh. As mentioned

earlier, the inf-sup constant for ST is O(k - 'Y) for some unknown 'y [26].

To characterize the stability of MT1 and MT2, we would like to use Theorem 3.1.

Both MT1 and MT2 satisfy (Al) and (A2). They also satisfy (A3) with 7 = 3

(computations indicate this is pessimistic). Condition (A4) is met by both MT1 and

MT2 (see [6]). To gain a practical description of the inf-sup constant for these mixed

methods we turn to the computational approach of the next section.
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4.2 Numerical Investigation of Inf-Sup Condition

Recall from Chapter 3 that the global inf-sup constant in Theorem 3.1 can be es-

tablished if either (A1)-(A4) hold or if (LS),(A4) hold. Just like we estimated the

global inf-sup constant by an eigenvalue computation in section 3.2, so also we can

estimate the local inf-sup constant in (LS) instead. Once -y in (LS) has been estimated

computationally, we can expect the estimate in Theorem 3.1 to hold for the range of

k tested, since (A4) holds.

We therefore estimate, for both MT1 and MT2, the value of - in (LS) over the

reference triangle k. The results are given in Figure 4.2. We see that for k < 11 the

slope is -0.3 and for k > 11 the slope is -1.1. This significant shift in the slope may

indicate that the k > 11 region reflects the asymptotic rate. This suggests that the

inf-sup constant for MT1 is about O(k- 1 ).

Most commercial codes limit p-refinement, using an upper bound on polynomial

degree that is usually much less than 20. For practical purposes therefore, the O(k-')

computational estimation we have obtained will govern the globally observed inf-sup

constant.

Remark 4.1 Let us remark that ST could also be put in the form of a mixed method,

i.e. in the form (2.7)-(2.8), by taking WN = div(VN), which gives [19] Wk(k) -

Pk-i(K). We could then attempt to numerically estimate the global inf-sup constant

by the local one as done here, since Theorem 3.1 will again hold. Unfortunately, the

local inf-sup constant is 0 in this case, even though the global one is positive. This
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discrepancy occurs since condition (A2) is not satisfied here.

4.3 Asymptotic Convergence Rates

Recall that the space Vk(K) = [Pk(k)] 2 used in ST is the minimal conforming space

of polynomials of degree < k. As in Section 3.2, this means that in the absence of

locking (v fixed and not close to 1/2), the asymptotic rate of best approximation in

terms of the HI(Q) norm for ST is given by (3.8), assuming the solution u E Hr (a),

r > 1. The same rate will also be observed in the energy norm (2.5). Also, the

inequality given in (3.10) holds for the pressure. The upper bounds in (3.8),(3.10)

represent the optimal asymptotic convergence rate for polynomials of degree k.

Keeping h fixed in (3.8), we get the rate for the displacement error for ST un-
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der p-refinement for any v E [0, 1). Hence p-refinement is free of locking for the

displacements (but not necessarily the pressures).

Under h-refinement with k < 3, O(h) energy norm locking is the best rate in-

dependent of v. However, for k > 4, the rate of convergence in displacement and

pressure for ST is O(hmin(k'r - 1)) independent of v, where the solution u C H r .

For the mixed methods, we have the following result for the case of straight sided

triangles.

Theorem 4.1 Let VN(Q), WN(Q) (k > 2) satisfy (LS), (A4). Then for any e > 0,

there exists a constant C, independent of u, h, k and v C [0, 1) such that

IIu - UNII< Cghlk-s+l+S(jUjs + -- pj.s-1),

ip- pNIIo < Chlks+l+Y+e(HuH + H1PII - ),

where

l=min{s-l,k-n}, n=0forMT2,n=1forMT1.

and -y is the exponent in (3.5).

Proof: We note that since (A4) is satisfied, Theorem 3.1 holds. The proof then follows

the same line as that of Theorem 5.2 in [20] for parallelograms. l

As mentioned previously, we have characterized the constant y computationally,

which will be the same over all the (affine-equivalent) elements.
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4.4 Numerical Results

In this section we examine the performance of ST and MT1 on model problem SING

(see Section 3.4.1). We are interested in both h- and p-refinement and also consider

both smooth and near-singular solutions. We compare the results to the error bounds

given above.

4.4.1 h-Refinement

We begin with ST using h-refinement on both a smooth and a near-singular solution.

We see in Figure 4.2 that when the solution is smooth and k = 2, energy norm locking

of O(h) is observed as v -+ 1. This order of locking is predicted by (3.8) for k = 3 as

well, although it does not appear for this model problem. Consistent with theory, we

see no energy norm locking when k 4.
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Figure 4.2: ST, h-refinement, Smooth Solution.

The SNS shows no convergence for k = 2 (i.e. O(h2 ) locking), and O(h) locking
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for k 3. When k = 4, the SNS rate of convergence is unaffected as v -- 1, but we

see a locking ratio of about 4 that increases gradually as h decreases, see Table 4.4.1.

When the solution is near singular, we see in Figure 4.3 the rate of convergence in

energy norm does not change as v -+ 1. This is consistent with (3.8), since the rate

depends both on k and the regularity of the solution. For near singular solutions, the

effective r is quite small, so the rate of convergence y = min{k, r - 1} is dominated

by r. The behavior for the pressure is qualitatively the same for the near-singular

solution as for the smooth.

Next we use MT1 under h-refinement to solve SING with a smooth solution first,

and then a near-singular one. In Figures 4.4 and 4.5 we see that the performance of

MT1 is unaffected by the value of v. Even the pressure approximation is unaffected

asv-+1. As with ST, the regularity of the near-singular solution dominates the rate

of convergence in Figure 4.5, so even for k = 4, the observed energy norm rate of



54

N

k =2 15_j47 95 159 239 33 447~ 57

Ls(0.4999, N) 1.1411.37 2.97 5.39 8.17 11.35 14.94 18.95

N

k =3 29 {95 197 335 509 j719 965 1247

Ls(0.4999, N) 1.24 {2.71 4.40 j5.56 6.74 j8.11 9.75 11.66

N

k =4 47 159 335 575 (879 1247 1679 2175

Ls(0.4999, N) 1.34 2.36 3.21 3.61_ 3.86 4.03 4.16 4.27

Table 4.1: SNS Locking Ratios, ST, h-refinement, Smooth Solution, k 2, 3, 4.
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convergence never exceeds 0(h 2 ).

Note that similar to MQ5, MT1 under h-refinement is locking free, yet the rate

of convergence in both energy norm and SNS is 0(h) worse than the asymptotic rate

of best approximation. This is due to the polynomial degree for PN being 2 degrees

lower than that for UN (rather than 1 as in MT2).
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Figure 4.5: MT1, h-refinement, Unsmooth Solution.

4.4.2 p-Refinement

We see in Figures 4.6 and 4.7, that under p-refinement, ST performs very well on

our model problem. The displacement approximation is essentially the same for both

v = 0.3 and v = 0.4999. Only the pressures show a slight difference, with a nearly

constant locking ratio of about 1.4 for the near-singular solution on 8 elements.

Even this small shift is avoided by MT1. We see in Figures 4.8 and 4.9 that the

value of v does not affect the performance of MT1.
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In summary, the numerical performance of ST and MT1 on our model problem

is consistent with available theory. ST locks in the energy norm for low k under h-

refinement, but is locking free if k > 4. As predicted, for the p version, it is locking-free

in the energy norm but (somewhat surprisingly) almost locking-free in the pressures

as well. Pressure locking is more pronounced in the h version. Here, no convergence
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is observed for k = 2 and O(h) locking for k = 3, for both the smooth and near-

singular solutions. When k = 4 no pressure locking occurs, although the locking ratio

may be significant for smooth problems. The experiments indicate that MT1 under

h-refinement is locking free for any reasonable k.

In light of these experiments, the lower bound on the inf - sup constant for MT1
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obtained analytically in [17] seems pessimistic. The inf-sup estimate of k- '3 for k < 11

suggested by the computations of Section 4.2 is reasonable since MT1 shows no SNS

locking under p-refinement in that range. To test the apparent shift suggested by

Figure 4.2, the p-refinement experiments of Figures 4.8 and 4.9 on MT1 would need

to be run with higher values of k.



Chapter 5

Curvilinear Elements

Since curved elements are essential for p version meshes, in this chapter we investigate

locking on curved elements, focusing primarily on p-refinement. We prove that on

a single curved element, the displacement error is bounded by (k - a) - r where a

depends on the polynomial degree of the mapping from a reference element to the

curvilinear element. We adapt the mixed methods from Chapters 3 and 4 to curved

elements and show how the inf-sup constant can be estimated when these methods

are used on curvilinear meshes. We use this result to compute inf - sup constants for

several mapped elements and show that these are stable for practical applications. We

also show that modified versions of MQ1-6 can be proven to have the same stability

behavior on curvilinear elements as on parallelogram elements.

When displacement is of interest, we show that the SFEM shows significant de-

terioration when curved elements are used on the boundary with p-refinement. In
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addition, we show that the stress error is adversely affected under p-refinement by

both curved boundary elements and elements with curved interior edges. We also

perform experiments to show that the mixed methods of Chapters 3 and 4, when used

on a curvilinear mesh, are robust for a model problem.

As a final test, in Section 5.5, we use a benchmark problem from [25] to investigate

the performance of SFEM and a mixed method for computing point values of stresses.

In [25], the SFEM is shown to be ineffective for computing point values of the sum of

normal stress and a post processing method to overcome this shortcoming is proposed.

We find that mixed methods with curvilinear meshes can be used to accurately extract

these point values without any post processing.

5.1 Single Element Analysis

In this section we show that, on a single element, an invertible polynomial mapping

does not affect the asymptotic rate of convergence under p-refinement, but can affect

the relative error, resulting in a locking ratio greater than one. This shift is shown to

depend on the degree of the polynomial map. This result is given for the case that kT

is the reference square.

Theorem 5.1 Let K : K --+ K be an invertible polynomial map, IFK E [Qq(k)]2

and Uk E [Vk(K)]2, where Vk(K) = {v : v = Yo ', b E Qk(k)}. Let u satisfy (2.3)
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on K and Uk be the solution to (2.4). If k is the reference square then

(5.1) Hu - UkH H'(K) < C(k - )(r-)IlUIIHr(K),

where a = 3q - 2.

Proof: It is well known (see Theorem 3.3 of [1]) that (5.1) follows if we can show it

for the completely incomt ressible case. Thus we consider u such the div u = 0, and

let ¢ € H 2(K) be such that u = curl 0 solves the limiting case (A -+ oo) of (2.3).

Let the globally invertible polynomial map FK : k -+ K be defined as y =Y.KX

where FK E [Qq(k)] 2 . Let JK be the Jacobian of .FK and d be the determinant of

JK. Then

d =y
-- --1 

Y2 Y1 Y2 C P2q-1,2q-2 U P2q-2,2q-1 C Q2q-1. 1 Since 77K is smooth andOXI ax 2  ix 2 axr

invertible on K, Idl > c > 0 on K and for 0 E Hr(K) we have

(5.2) C1 101iHr(K) _ I111r(k) - C211¢11IIr(K),

where 4) 4) o.K. Define 4 = . For any I there exists 0^ C Q1(K) such that for

0<t<2, r>l (see [21])

(5.3) 11- ¢11IHt(k) < C1-(r+I- )llllHr+1(k)-

Taking 4, = 1d2, and combining (5.2) and (5.3) with t = 2, we have

(5.4) I11 - OkHjH2(K) - Cli - &lHH2(k)

< Cl-(-1 )llllHr+,(K)-

'We define Pk,,,k = span{nI"12 : 0 < a < kl, 0 2 12 < k2 }.
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Now

curl Ok - ak a~bk\

~aY2 aYi

aO x1 y ax2 aY2 d 2 + 2'ekd a ax d 2axI Y2 X2 a\ (ax 1 aY2 2  aY2)

(a04k ax1 +a~4k aX2~ d 2 -2d (ad 8xi ad ax2 ))

*0x1 'a ax2 aY1J ax 1 +5- X

Also

ax1  ay) a 1 ~ --Y 1  Y2 7X 2  - 2 R2

So

curl 4 k ((a~k aY1  a~k aYI d + ( ad ayl ad ayi
-ax1 ax2  ax2 ax1] ax1 ax2  ax2 axI 1

-(a~kaY2 ak aY2)d -2 (ad am ad aY2))

Now

ax 1  ax2  d l-1+q+2q-1,l+q-1+2q-1 ='P1+3q-~2,1±3q2 =Ql+3q-2-

Similarly, every other term in curl bk is in the same space. Letting a = 3q- 2 and

k = I+ 3q - 2, then I1 k - a. Then (5.4) implies

(5.5) HIU - UkIIH1(K) < C(k - a)-~(r-1)IIU II~()
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Theorem 5.1 gives a 1 in the case of bilinear mappings. This has been experiment-

ally observed in e.g. Figure 5.2 of [3], where the shift with other mappings is also

computationally investigated.

Similar results are available if kZ is the reference triangle. In that case if FK G

Pq(K) and uk G [Vk(K)] 2 where Vk(K) {v : v o Eig e Pk(k)}, then a =

max{0, 3q - 4}. We have considered the simple case of a single element to avoid the

complexities of more general meshes. Experimentally, the single element results carry

over qualitatively to the multiple element case.

5.2 Curvilinear Mesh Analysis

We now consider meshes constructed with mapped elements. We show that The-

orem 3.1 applies to MQ1-6 and MT1-2 on regular (defined below) curvilinear meshes

provided condition (LS) holds. We show how to estimate the inf - sup constant (in

terms of k) for these mixed methods on mapped triangular and quadrilateral elements

for certain types of maps. We show that several standard mappings produce stable

methods and we provide a technique for examining the stability of additional maps.

Throughout this section, we assume we are given a family of partitions {Ch} of 9,

where Q = UKECh K. We assume the mappings FK : k --+ K are smooth and globally

invertible on K. We let JK denote the Jacobian of 77K, and assume its inverse JK1

exists for any i E k. We say that the curvilinear mesh {Ch} is regular [7] if, in

addition to the conditions in Section 3.1, the following conditions hold.



64

i) Let I JK = IdetJK1, then

(5.6) IIJKIIoO, HJK'1H0 , sup IJK(i-)I, [inf IJK(.)I - ' < K,
£-EK E

where C is a constant independent of h.

ii) The mesh admits the existence of a "Cl6ment operator" [8]; a continuous inter-

polate using averages of v E [H'(Q)]2 instead of point values.

Regular meshes can be constructed on many domains of interest.

To use Theorem 3.1 for our mixed methods on curvilinear meshes, we remark that

although (Al) and (A2) hold, it is not known how to establish (A3) analytically. We

therefore use condition (LS), by estimating the local stability condition computation-

ally. In addition we must verify that (A4) applies for these mixed methods. The

following lemmas establish (A4) for the case of triangular and quadrilateral elements

respectively.

Lemma 5.1 Let {Ch} be a family of regular partitions of Q, and let .FK : k -+ K

denote the smooth invertible map associated with K, with K the reference triangle.

Then the pair ([Pk(Q)] 2 , Po(Q)) is globally stable where Pk(Q) = {v: VIK =vOY', b

Tk(K)}.

Proof: We let V = [H0d(Q)]2 , Vh = [p 2(Q)] 2, and Qh = P0 (Q). We use Proposition

4.1 from [6], which says it is sufficient to construct an operator H12 : V -+ Vh that has

the following two properties:

(5.7) Jdiv(v-I 2 v)qhdx=0 VvEV and V qhEQh
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and

(5.8) 1112 V11l, K 5 C(hKlIIvIIo,K + IvI1,K) Vv V and VK E Ch.

We define 112 VIK as follows:

12 vjK E [P2(K)] 2 ,

112 VIK(M) = 0 VM vertex of K,

(5.9) I2 VIK ds =f v ds Ve = edge of K.

Using (5.9), we establish (5.7) as follows:

J div(v - H2 v) qh dx 1, K div(VK - 112 VIK)qhlK dx
KECh

- S qhjKj (VIK-112VIK)'- ds=0,
KECh

where we have used the fact that qh is constant over each K.

Now we establish (5.8). First, H 2(v) = 0 Vv E [Po(K)] 2. Also, 11ii 2vI 1 < CJvjj 1

due to (5.9). Hence by the Bramble-Hilbert lemma we have 1112vI < CIV1l,K, or

11ll2v[Io,K _< CIv1l,K. Also, by an inverse estimate, 1I 12vI1,K < h-K 11i 2vIlo,K. Then

I I12vI1,K 1H2vIIVIIo,K + 111ll2VII,K

__ CIVl1,K + II 2v1,K

5 CIV1,K + hK'l 12Vllo,K

< CIV11,K + ChK'llvIIo,K

< C(hl-'IIVIo,K + Iv1l,K).
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E

Lemma 5.2 Let {Ch} be a family of regular partitions of Q, and let FK K -+ K

denote the smooth invertible map associated with K, with k the reference square.

Then the pair ([Qk(Q)]2 ,PO(Q)) is globally stable where Qk(Q) = {v "VIK 0

j;l- E Qk(k)}.

The proof is similar to the proof of Lemma 5.1.

We see therefore that (A4) holds for curvilinear quadrilateral and triangular regular

elements. Then if (LS) holds, the inf-sup constant is given by Theorem 3.1.

We investigate condition (LS) computationally as follows. Let FK be an arbit-

rary smooth invertible mapping. To verify the local stability condition (LS) we

should use the subspaces Vk(K) n H01(K) and Wk(K) n L(K). However, instead

of Wk(K) n L2(K), it turns out to be easier, both computationally and theoretically,

to use Wk(K) n L0(K) where

L' (K) o C-:¢ O*K, L 2(k)1.

Note that functions b E L(K) satisfy fK IJkl dx = 0 instead of fK Odx = 0. We

therefore define (LS), an alternative condition to (LS):

(LS) For every K E Ch , given q* E Wk(K) n L2(K), there exists v* C Vk(K) n

[HI(K)]2 such that (3.4) holds.

The above computational substitution can be justified on the basis of the following

theorem.
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Theorem 5.2 Let the spaces VN, WN satisfy either (LS) or (LS), and (A4). Then

the global stability estimate (3.5) holds.

Proof: The case (LS), (A4) is proven in [20].

Let q E WN be arbitrary. Then for each K C Ch, qlK =-4 o.F' where 4 =

q + 4* c Wk(K), with q E Po(k) and fk 4*d = 0. Then qlK ( + 4) o
0 .K 1 + 4o .k 1 = 1K + q*, where 41K E P0 (K), qK E Wk(K) n L (K). Then write

q = 4 + q* with 4 being the weighted L2 projection of q onto the space of piecewise

constants:

WN = {q E WN : qlK E Po(K) VK E Ch}.

From Lemmas 5.1 and 5.2, there is i' E VN such that

(5.10) (div>, C) C1411 and I , < C4114 Io,

with positive constants C3 and C4 independent of i and 4.

For each K E Ch, we have q* E Wk(K) nf L (K) and hence by (LS) we can find

v* E VN such that vK C [Ho'(K)]2 and

(5.11) (div v*, q*) > Clk-7 1q* 0 with Iv*11 _< C211q*I1o.

Since v! E [Hod(K)]2, it holds that

(5.12) (div v*, 0.

Let now v = SR, + v*. Using (5.10)-(5.12), the Schwarz inequality and the
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arithmetic-geometric mean inequality we get

(div v, q) S(div ir, 4) + S(div ir, q*) + (div v*, 4) + (div v*, q*)

>C31011' - Sjirjllq* l + Clk-'jjq*jj'

> C311011 - - (J/2) jir12 + Clk-111q*112

" S(C3 - (C4E/2)) ll112 + (C 1 k- ' - (S126))Ilq* 11

_ C5k- (lqIj2 + jlq*j11)

= ck-I ll07

where we first choose =s C3/C4 and then S = Ek-'/C 1 . Since we then also have

lvi1 SiVli + lv*1l SC411110o- C211q*1j 0  C~lq~lo,

the assertion is proved. El

Since (A4) holds by Lemmas 5.1 and 5.2, the global stability condition (3.5) depends

on either (LS) or (LS). We have not established (LS) for curvilinear elements based

on the mixed methods of Chapters 3 and 4, but we provide computatioal validation

of (LS) in the next section. We also verify (LS) analytically for modified versions of

our quadrilateral mixed method spaces in Section 5.4

Provided the global stability condition holds, the following theorem gives error

bounds for the mixed methods.

Theorem 5.3 Let VN(Q), WN(Q) be defined on regular meshes {Ch} consisting of

curvilinear triangles and quadrilaterals. Let the global stability condition (3.5) hold
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with constant 7 independent of h. Let (A5)-(A6) hold with n > 0 in (A6). Then for

any > 0, there exists a constant C, independent of u, p, h, and k, but dependent on

1C in (5.6), such that

(5.13) I[u - UNIIl < Cehlk-s+l'+([[Ujs + IIpIIs-1)

(5.14) li - pNI0 Cehlk-s+x+'±+(I]u]s + 1[pIIs-I)

where

I min{s - 1,k - n}.

See proof of Theorem 5.2 in [20]. For MQ1-4,6 and MT2, n = 0. For MQ5 and MT1,

n = 1.

5.3 Computation Of Inf-Sup Condition

We begin with the results of computing the inf - sup constant from (LS) for the space

MT1 on mapped triangular elements. We consider elements that have exactly one

curved edge. The first map is a parabola, see Figure 5.1, ranging from the extreme

concave edge with parallel tangents to a reasonable range of convex parabolic edges.

The results are found in Figure 5.2. We see that as long as the case where the edges

meet with parallel tangents is avoided, the inf - sup constant has about the same

decay rate as the unmapped reference triangle, where -y - 1.
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1

1 5

-1.5

Figure 5.1: Curvilinear Triangles - Parabolic Edges

0 0
10 10

0 y-int-l.O o y-int =-1.0

y-int = -0.75 * y-int = -1.25
Sy-Int =-0.5 xY-int =-.5

VO slope = -1

0 - slope -1 -o1 0

C C

slope = -2.2

10-2 10
-
1

10 101 10
2  

10 10 10

k=3 .... 15 k=3 ... , 15

Figure 5.2: Inf-Sup Constants - Parabolic Triangles - Concave, Convex

The next case is for the circular maps shown in Figure 5.3. The range of maps

considered is again from the case of concave parallel tangents to a reasonable range of

convex circular edges. As with parabolas, as long as the case where edges meet with
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-0.58

-0.8

1-- 1.5

Figure 5.3: Curvilinear Triangles - Circular Edges

10 10

0 y-int=-10 + y-int =.-1.1

) y-int = -0.8 l y-int =-1.2
-- y-irit =-0.585 X y-int = 1.5

C

.0

slope = 1 slope = -1

slope = -1.33
10 10-. .

10 101 102 10 101 102
k=3, .... 15 k=3 .... 15

Figure 5.4: Inf-Sup Constants - Circular Triangles - Concave, Convex

parallel tangents is avoided, the decay rate -/ is comparable to that of the unmapped

element. This is consistent with our definition of regular mesh, which requires element

interior angles be bounded away from 0 and r. These results are seen in Figure 5.4.
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0.5

0.5

-1

Figure 5.5: Curvilinear Quadrilaterals - Parabolic Edges

0 y-int=1.0

0.5- * y-int = 1.25

slope = -0.08 0.55 X y-int = 1.5

slope -0.11C 0.5-
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o .3 
C l )

C" slope = -0.15 "

* y-int=1.0 
|

*E y-int = 0.75
* y-int = 0.5 slope = -0.08

k =3 ... , 14 k = 3, ... , 14

Figure 5.6: Inf-Sup Constants - Parabolic Quadrilaterals - Concave, Convex

We conclude that if triangular meshes are constructed so as to produce sufficiently

regular elements, the resulting inf - sup constants are comparable to the linear case.

We note that automatic mesh generators exist that produce regular meshes for most
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practical Q.

1.25

0.5

-1

Figure 5.7: Curvilinear Quadrilaterals - Circular Edges
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k = 3, ... , 14 k = 3, ... , 14

Figure 5.8: Inf-Sup Constants - Circular Quadrilaterals - Concave, Convex

We performed similar calculations for the curvilinear quadrilaterals in Figures 5.5

and 5.7, using MQ4. The results are given in Figures 5.6 and 5.8. We see that the k
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tested are well within the pre-asymptotic range, since the rate is not close to -*"

5.4 A Stable Curvilinear Quadrilateral Element

The stability of mixed methods MQ1-6 depends on condition (LS) (or equivalently

(LS)) and the inf-sup constant for these methods depends on 7 in (LS). So far we only

have computational estimates of -y. In this section we define curvilinear elements for

which a theoretical inf-sup constant of Ck-2 can be established, identical to that for

parallelogram elements (see Corollary 3.1).

To define these elements, use (3.2) to define VN, WN in terms of Vk(K), Wk(K).

For MQ1-6, we define Wk(K) by (3.1). We define Vk(K) as follows:

(5.15) Vk(K) { }

v =e ok' E k) \ v'(k,:

where u = £K(fi) = IJKI-'JKfi o -Tk' is the Piola transformation of fi [6]. Since

'r E VkO(k) > v E VkO(K), VN is again conforming. We then have the following

theorem.

Theorem 5.4 Let VN, WN be defined by MQ1-6, (5.15) and (3.2). Then

(div v, q) 2
(5.16) inf sup >

qEWN EV\{o} Jjvjjjqjo -

where the constant C is independent of h, k and q, i.e. (3.5) holds.

Proof: We show that (LS) holds with - =1 The theorem then follows from The-

orem 5.2.
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Let q* E Wk(K) nl L(K) be arbitrary and define * c Wk(k) n L2(K) by * =

q*o FK (* L2(k) by definition of LE(K)). On the reference square, the continuous

inf-sup condition holds. Hence, there exists E C [HI(k)] 2 such that

(5.17) (div , 4 *) > C]IqIIo2 and 1,Iik 5 114*1"]0,k,

with C independent of 4* and (-.

Define * € Vl(K) by IV*= 7k7r. By (A2), (A3) and (5.17) we obtain (integrating

by parts)

(5.18) (div 4r* c*)k (.* V4 *)k = -(Tk , V4*)k

= -(*,V*). = (div -, 4*)k

> C114II1

and

(5.19) I"'11,/ kV1,!- Ck-I][1,/- Ck 12 4*Io,k

This proves the discrete inf-sup condition on the reference square.

Next, we let

(5.20) v* = K() JKI- 1 'JK* 0 - 1

Then by (Al), £K(V*) C Vk(K) n [Ho'(K)]2. Using the basic property of the Piola

transformation [6], we have

(5.21) (div v*, q*)K = (div **, 4*)!
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By assumption of the reqularity of the elements, we have

(5.22) llq*10,K Ch-ikT*H0, and 2v,g _ Ch- k2 LC*Ilg.

Then (LS) follows from (5.21) and (5.22), and the local conditions (5.18) and (5.19).

By Theorem 5.3, since (3.5) holds and (A5)-(A6) hold, therefore we get the conver-

gence rates in (5.13) and (5.14). We have not used these modified spaces in our

computations. However, the experiments in Section 5.5 reflect these rates of conver-

gence.

We point out that to implement these spaces, one needs only a basis for Wk(K)

and Vk(K), the mapping .TK and its Jacobian. In particular, the inverse mapping Yj-g'

is not required.

5.5 Numerical Experiments

In the p-version, element size is fixed, so curvilinear elements must be used to accur-

ately model the domain for most practical problems. We use the blending function

method (see [24]) to match the domain exactly. We also study meshes which have

interior edges that are curved. We study the standard and mixed methods on both

curvilinear quadrilateral and triangular elements.

We limit our investigation to domains (meshes) that are typical in applications.

This is of course a subjective restriction, but the curved domains seen in practice
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QDIST QPARA QCIRC
1 11

-1 1-1 1-1

-1 -1 -1

Figure 5.9: Curvilinear Quadrilateral Meshes

can often be parameterized using piecewise low degree polynomials or trigonometric

functions (ellipses). These domains can be produced by mapping the reference domain

with non-affine invertible mappings.

The quadrilateral meshes we use are given in Figure 5.9 and the triangular meshes

are given in Figure 5.10. These meshes were chosen to include elements with edges that

are parameterized by low-order polynomials (parabolas) and trigonometric functions

(circles), with both interior and boundary curved edges.

5.5.1 Finite Element Spaces

In Chapters 3 and 4 we described several polynomial spaces defined on reference

elements. When curvilinear elements are used, the finite element spaces are com-

posed by applying non-affine invertible smooth mappings to reference polynomial

spaces. The resulting spaces are not polynomials, but mapped images of these ref-

erence polynomial spaces. Recall that SQ : Vk = Qk(k) and ST: Vk = Pk(k).
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TPARA TCIRC

11-11

-1 -1

Figure 5.10: Curvilinear Triangular Meshes

We restrict our attention to MQ1: Vk = Qk(k) n -Pk+2(k),Wk =Pk-l(k) and

MT1 : vk = Pk(k), Wk = Pk-2(k). A partition Ch of the domain Q is constructed

such that Q = UKEChK as indicated in Figures 5.9 and 5.10. For each K there exists a

smooth invertible mapping FK such that K = Fk(k), where k is either the reference

triangle or square.

5.5.2 Computational Convergence Results

We restrict our attention to the p version and begin by examining SQ and ST on

meshes with curvilinear quadrilateral and the triangular elements, respectively. We

continue using energy norm and SNS to measure the error as discussed in Chapter

3. Throughout this section we solve model problem SING with a near-singular (un-

smooth) solution.
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Figure 5.11: Method SQ, Square Mesh vs QDIST, Unsmooth solution.

SFEM on Quadrilateral Elements

We first look at method SQ on meshes with straight and curved interior boundaries.

For this we solve problem SING on meshes QDIST and QPARA and also a mesh with

four square elements. In Figures 5.11 and 5.12 we see that the error in energy norm is

not sensitive to changes in v, however this is not true for the SNS error. As v --- 1 the2

relative error in SNS increases significantly on both QDIST and QPARA, much more

so than it does for the square mesh. We conclude that method SQ has near optimal

behavior for energy norm but that it locks in SNS when the mesh contains elements

with curved interior edges. Table 5.5.2 shows that the locking ratios are significantly

worse when curved interior edges are present.

The results for the model problem on mesh QCIRC are shown in Figure 5.13. We

see that the error in both the energy norm and SNS increases significantly as v -+ 2T

Thus we conclude that the standard method degrades significantly when curvilinear
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N

95 135 183 239 303 375 455 543

Square - Ls 7.12 8.85 7.85 6.71 5.63 4.33 3.19 2.53

QDIST - Ls 12.08 45.26 28.78 57.90 61.98 66.20 64.77 65.72

QPARA - Ls 35.93 23.70 57.73 64.52 65.49 74.49 78.79 81.54

Table 5.1: SNS Locking Ratios (Ls(O.4999, N)), SQ, Unsmooth Solution.

2 4
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110 0103
0C

0 -t:

UJ dashed line - square mesh c'

"Z solid line- OPARA mesh B 1 dashed line - square mesh
c10 solid line - OPARA mesh

3' :f.... 04999 * fl ... 0.4999

0 - We10 10 .. . . . . . . .

10 10
2  10 10 10

2  10

Degrees of Freedom -- k = 2, .10 Degrees of Freedom -- k = 2. 10

Figure 5.12: Method SQ, Square Mesh vs QPARA, Unsmooth solution.

elements are used to partition domains with curved boundaries. This energy norm

locking was not observed for method SQ on straight sided elements.

SFEM On Triangular Elements

To evaluate the standard method on curvilinear triangular elements we use meshes

TPARA and TCIRC shown in Figure 5.10. Mesh TPARA has curved interior edges,
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Figure 5.13: Method SQ, Mesh QCIRC, Unsmooth solution.
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Figure 5.14: Method ST, Mesh TPARA, Unsmooth solution.

while TCIRC has curved elements on the boundary. As seen in Figures 5.14 and 5.15,

method ST exhibits no energy norm locking on either mesh while SNS locking ratios

are significant in both, as seen in Table 5.5.2.
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Figure 5.15: Method ST, Mesh TCIRC, Unsmooth solution.

N

47 95 159 239 335 447 575 719 879

TPARA - Ls 20.82 26.10 30.50 34.10 37.40 40.72 44.04 47.32 50.29

N

35 71 119 179 251 335 431 539 659

TCIRC - Ls 39.55 37.26 32.07 15.73 61.06 136.21 84.67 46.92 123.77

Table 5.2: SNS Locking Ratios (Ls(0.4999, N)), ST, Unsmooth Solution.

MFEM On Quadrilateral Elements

We now turn our attention to mixed finite element methods. We do the same sequence

of experiments for the mixed methods as we did for the standard method. When curved
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Figure 5.17: Method MQ1, Mesh QPARA, Unsmooth solution.

edges are in the mesh interior, as in QDIST and QPARA, the curves for v = 0.3 and

for v = 0.4999 are essentially the same. Thus we see in Figures 5.16 and 5.17 that

method MQ1 is very robust on meshes with curved interior edges. Similarly, on mesh

QCIRC virtually no increase in the errors is observed, as seen in Figure 5.18.
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Figure 5.19: Method MT1, Mesh TPARA, Unsmooth solution.

MFEM On Triangular Elements

To study mixed methods on curvilinear triangular elements we use MT1 (which has

the same displacement space as ST) to solve the model problem on mesh TPARA as

an example of a mesh with curved interior edges and on mesh TCIRC as and example

of a mesh with curved edges on the boundary. We see in Figures 5.19 and 5.20 the
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error is unaffected as v -+ 1

In summary, when the curved edges are on the mesh interior, the standard method

showed mild energy norm locking but significant SNS locking on both quadrilat-

eral and triangular meshes. On the other hand, the mixed methods show essentially

identical error curves for both quadrilateral and triangular meshes in both energy and

SNS as v-+ '

Meshes with curved exterior boundaries influence both displacement and SNS

locking, for the standard method. Some locking was seen in the energy norm on

both quadrilateral and triangular meshes which was not present on straight sided

elements. In addition, SNS locking was severe. For the mixed methods the rate of

convergence was unaffected in the problems we studied, both for the energy norm and

SNS, although minor locking ratios were observed in some cases.
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5.6 Computing Point Values - A Benchmark Prob-

lem

In the engineering design process, often the objective is to identify regions of high

stress and produce a design that distributes the stress more evenly throughout the

body, producing lower maximum stress levels. This requires the analytical tool to

accurately compute point values of stress and other quantities of engineering interest.

To evaluate the point value extraction capability of the FEMs we are studying, we

turn to a benchmark problem from [25] which we will refer to as the Rigid Circular

Inclusion (RCI) problem.

y

ODo ___ D C

E .

LA A B -a

a i b

Figure 5.21: Rigid Circular Inclusion Problem and Quadrilateral Mesh.

This problem involves a rigid circular inclusion in an infinite plate, subject to

unidirectional tension under plane strain conditions. The problem is illustrated in
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Figure 5.21. The exact displacement components, found in [15], are:

Ur 8Cr 1)-l)r2 + 2-/a + [3(+1)a2+2r2+ - cos20}

u -- 8r ( - 1 )a 2 + 2r2  2aJ sin20,

and the exact stress components are:

0",, [ - ya2 + 203a M 3a 4 )c5
Ur 1 a_ cos 20

r 2 r2  1

'U'"" ' 3  -4v 2 2S 4 -

Uo - 2 --+r- cos 20,

2 rro (1+2 H54 i
Oao 2 3S + 4)-- i- 20,

where K,/, -y, S are constants which depend on Poisson's ratio v only. In the case of

plane strain:

K 3-4,2 2 - 4v 1
=3-4u, /3 -34v' " 2 3 -34v"

y

D C

E

A B

Figure 5.22: Rigid Circular Inclusion Problem - Triangular Mesh.
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Figure 5.24: RCI problem, Method ST, Triangular elements.

Before we look at SNS point value extraction, we do the same error measurements

we have done in previous chapters. The first two experiments are with SQ and ST

using p-refinement on the RCI problem; the triangular mesh is shown in Figure 5.22.

The results are shown in Figures 5.23 and 5.24. In Table 5.6 we see that both methods

have significant locking ratios, although the rates of convergence appear unaffected as
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v In general, the locking ratios for ST are smaller than those for SQ. In both

methods, the locking ratios stay relatively constant over the range of k we tested.

N

SQ 40 69 96 136 184 240 304 376

LE 11.21 7.52 9.14 8.84 8.67 9.95 15.05 32.24

Ls 585.28 296.40 326.04 303.42 318.91 329.10 382.76 377.50

N

ST 24 54 96 150 216 294 384 486

LE 5.27 3.60 3.59 3.75 3.63 3.62 3.67 3.46

Ls 136.61 120.29 183.64 178.30 93.06 82.93 129.70 159.59

Table 5.3: Locking Ratios, SQ and ST, RCI Problem.
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Figure 5.25: RCI problem, Method MQ1, Quadrilateral elements.
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Figure 5.26: RCI problem, Method MT1, Triangular elements.

In both energy norm and SNS, MQ1 and MT1 produce locking ratios of about 2,

as seen in Figures 5.25 and 5.26.

We conclude that mixed methods on meshes with curvilinear boundaries are sub-

ject to slight increase in error as v -41 although the rate of convergence seems

unaffected. On the other-hand, SFEM on meshes with curvilinear boundaries shows

significant locking ratios, particularly in SNS. For this model problem, we also see

non-trivial locking ratios in energy norm, which are significantly greater than those

observed for the model problem of Section 5.3.

As mentioned above, an important capability of an FEM is point extraction of

stress, which in SQ and ST may be done by differentiating the computed displace-

ments. It is shown in [25] that o,, - ary and T.y can be accurately extracted this way,

even as v -4 1, but that o,, + o, = SNS cannot. (For the latter, at least in two

dimensions, post-processing could be used - see [25].)
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Figure 5.28: SNS Point Values MQ1 vs SQ, k = 8, v = 0.3 and 0.4999.

In Figure 5.27 and 5.28 we compare the point values of SNS along the arc AE (see

Figure 5.21), computed using SQ (differentiation of the displacements) and MQ1. We

note that when v = 0.3, both methods compute the actual SNS reasonably well even

for k = 3; while for k = 8 they match the actual values very well. On the other hand,

when v = 0.4999, we observe that even for k = 3, MQ3 still matches the exact solution
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Figure 5.30: SNS Point Values MT1 vs ST, k = 8, v 0.3 and 0.4999.

reasonably well, while SQ produces highly oscillatory results. The oscillations continue

in SQ even for k = 8, while MQ3 and the exact solution are essentially identical for

this k.

We performed the same set of experiments with ST and MT1 on a triangular mesh

(see Figure 5.21) for RCIP with 6 elements. The results in Figures 5.29 and 5.30 are
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qualitatively the same as with quadrilateral elements. MT1 performs well over the

range of v tested while ST produces good results for v = 0.3 but when v = 0.4999

the output from ST is oscillatory even for large k.

5.7 Summary

In this chapter, we have investigated the locking characteristics of several different

FEMs. The performance of these methods is summarized in Table 5.7. A "Yes"

means that the method converges at the asymptotic best rate, is locking-free, and has

negligible locking ratios (< 4). "Rate" means the rate of convergence is less than

optimal. "Lock" means the method locks to some degree. "LR" means the locking

ratios are significant (> 4). The h version results refer to experiments on meshes with

straight edges (Chapter 3 and 4 results). The p version results refer to meshes with

straight edges as well as meshes with curved boundaries (Chapter 5 results).

No computations were done using MT2, although we expect it to perform similar

to MQ1,2 and 4.
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Method h version p version

Displacement Stress Displacement Stress

Straight Straight Straight Curve Straight Curve

SQ Lock Lock Yes Lock LR Lock

ST Lock k < 3 Lock k < 3 Yes LR Yes LR

Yes, k = 4 LR k = 4

MQ1,2,4 Yes Yes Yes Yes Yes Yes

MQ3,5 Rate Rate Yes Yes Yes Yes

MT1 Rate Rate Yes Yes Yes Yes

Table 5.4: Convergence and locking properties of the different methods.



Chapter 6

An Application to Nonlinear

Elasticity

The analysis of mechanical components and structures is most commonly performed

on the basis of the linear theory of elasticity [12]. This approach gives excellent results

for a large variety of problems and is based on the assumption that the strains and

displacements are small. In the case of strains, "small" means much less than unity. In

the case of displacements, "small" means that the original undeformed configuration

and the final configuration of a body should not differ by much, so that enforcing

equilibrium in the undeformed configuration is the same as enforcing equilibrium in

the deformed configuration. In many important problems, for example when the

limits of the load carrying capacity of a structure are of interest, the displacements

are large enough that the equilibrium equations in the deformed configuration are

95
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very different from those in the undeformed configuration. In order to obtain reliable

results, a geometrically nonlinear analysis must be performed [16].

In [16], an iterative method is described for solving geometrically nonlinear prob-

lems in finite elasticity. It is based on a spatial formulation, which has some advantages

over the traditional material formulation. These include: (a) the equilibrium equa-

tions are satisfied in the deformed configuration; (b) the displacement components are

approximated by high-order polynomials and the blending function method is used to

provide an accurate geometric description of the deformed configuration; (c) the dis-

cretization errors are controlled by p-refinement; (d) the simulation of nonconservative

loads, such as follower loads, does not require any additional extensions in the formu-

lation, nor does it destroy the symmetry of the resulting stiffness matrix; and (e) the

extraction of stresses from the finite element solution is straightforward, since in this

approach the equilibrium equations are expressed in terms of the Cauchy stresses.

This formulation is a standard finite element displacement-based formulation. We

use this spatial formulation to define a mixed method by introducing an independent

variable for the "pressure".
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6.1 Mixed Method - Spatial Formulation

Using the equilibrium equations of elasticity (2.1a) we multiply by a test function

v E V and integrate to get the variational form of the equilibrium equations,

(6.1) (o7Vl,1 + OIv 2 ,2 + 7y(Vl,1 + v2 ,2 )) dx

jfividx+f givids Vv EV.

In the case of plane strain

ax 2y + A A 0 ex

(6.2) ay A 2p+ A 0 E

TXY 0 0 y 'Yxy

The nonlinear strain tensor e is

(6.3) E Y =a-b

^Iry

where

u 1 ,1

(6.4) a U2,2

U 1 ,2 + U2,1

is the linear part of s and

1 2 U
5(7u1,1 + 2,1 )

(6.5) b= (U2 + U2
2U1 ,2 + 2 ,2)

U1,I0I, 2 +{ U2,102,2
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is the nonlinear part. Substituting (6.2) into (6.1) we get

(6.6) f (2(xxvI,1 + EyV 2,2) + 1-l"xy(V1,2 + V2 ,1 ) + A(Ex + Ey)(Vl,1 -- V2,2 )) dX

ffiv dx+ gvids Vv V.

Define

(6.7) p = -A(EX + -Y)7

and substitute (6.3) and (6.7) into (6.6). We move the nonlinear terms to the right

hand side to get

(6.8) 2pJ (aivi + a 2v 2 ,2 + a 3 (vl,2 + v2 ,1)) dx - p(vl,1 + v 2,2 ) dx
2 1

fividx-+ fgivi ds -- 2/ (bivi, + b2 v 2,2 -Ib3(Vl,2-+v2,1))dx.

Putting (6.7) into variational form, we get

(6.9) f (a, + a2)w dx + A-' fpw dx

f(b + b2)w dx Vw C W.

The system of equations (6.8) and (6.9) is the variational form of our mixed method.

We produce an iterative scheme as follows. Let Q(0) designate the reference configur-

ation. Let upper indices "(i)" represent quantities associated with the zih iteration.

Then we have: U(i+1) is the unknown displacement vector to be determined at the ith

iteration; u(i) is the known displacement at the ith iteration; and 1(i) and f i) define the

domain and the traction boundary of the deformed configuration at the zth iteration.
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Using (6.8) and (6.9) we define the iterative procedure

f (+a)(i+l) v  1a(i±1) d(v

(6.10) 2[t i (a1 i+a)vl'l + 2  v2 2 -V1 , , 1a 3 (vi1,2 + v2,1))dx
(i)

- i/ p(i+)(Vl,, + v2,2) d = I,) fSvi <x() + givi ds(')
(b(i) lb()

+ 2p (b1i ,1 + v 2 ,2 + -3 (Vl,2 + V 2 , 1 )) dx( i)

and

(6.11) t +u('+l) u('+))w dx(i) + A-' P('+i)w dx()

SJ u(i) 2 (i)2  U(i) 2 dx().
) 1,1 + 1 ,2 +u 2 ,1 + U2 ,

2 W

We use the mixed method spaces MQ1 and first solve the discrete version of (6.10)

and (6.11) for u(1) by integrating on the reference configuration 9(o), which is the
linear problem (u) = 0). This produces the displacement vector u(1) such that

9(1) = ±() + u(N. Using -') we again solve the discrete form of (6.10) and (6.11) for

UN ) by integrating on Q(1). Continuing in this way, we produce a sequence of solutions

{u(i) } which converges to UN, the finite element approximation to the solution to (6.1).

We also get PN, an approximation to p.

At each iteration we have the following system of equations

(6.12) Au - Bp R1

(6.13) BTu + Cp =R2.

On each element, we condense out the pressure by solving (6.13) for p = C-1 (R 2 -

BTu) and substituting into (6.12), giving

(6.14) (A + BC-1BT)u = R, + BC-1R 2.
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Figure 6.1: Cantilever Subject to Pressure Load

We then solve 6.14 for u. By saving C- 1 , R 2 and B on each element, we can recover

p.

Since each iteration involves integrating over a mapped domain, each element in

the reference mesh becomes a curvilinear element with potentially no straight edges.

6.2 Numerical Results

We test the mixed method on the problem illustrated in Figure 6.1. A beam of length

I and height h is fixed on one end and subject to a uniform pressure load -L/2 on

top and L/2 on bottom. We set body forces f = 0. In [16] this problem and several

others are solved using the SFEM spatial formulation. Here, we are interested in the

case where v -4 ' which was not investigated in [16]. We want to approximate both

the displacements and the sum of normal stresses, SNS which is related to p as before,
SNS - - 2 (/t + A)

A

We compute the displacement and SNS for the case when I = 10, h = 1, modulus
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of elasticity E = 12000, Poisson ratio v = 0.3 and 0.4999 and the load L = 5. We use

SFEM with Vk(k)= Qk(k) and our mixed method with MQ1; in both cases we use

one quadrilateral element. The displacement results are given in Table 6.1.

Standard Method Mixed Method

v =0.3 v=0.4999 v=0.3 v=0.4999

k = 2 -2.4590 -0.2838 -2.6317 -2.4947

k = 3 -4.0682 -1.1477 -4.2534 -3.6171

k = 4 -4.8943 -2.0605 -4.9601 -3.9954

k = 5 -5.0443 -3.1704 -5.0731 -4.1209

k = 6 -5.0762 -3.6285 -5.0895 -4.1787

k = 7 -5.0949 -3.8592 -5.1037 -4.2243

k = 8 -5.1042 -4.0128 -5.1390 -4.3200

Table 6.1 Vertical Displacements of Point A.

The displacement for v = 0.3 is about the same for both methods, with the biggest

difference when k is small. However, when v = 0.4999, the difference is significant,

especially for small k. Assuming the results for k = 8 are reasonably close to the

true solution, we see that the mixed method produces more accurate displacement

approximations when k is small.

We are primarily interested in computing point values of SNS when the material

is nearly incompressible. We use the standard formulation to extract SNS for v =0.3
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and 0.4999. The results are given in Figure 6.2 for various values of k. These results

are qualitatively the same as those in Chapter 3, where the standard method produced
1

highly oscillatory SNS point values as v -+ 1. We note that the scale for SNS when v

= 0.4999 is O(104), 10 times the scale when v = 0.3. On the other hand, the mixed

method produced the results shown in Figure 6.3. Even though the exact solution

is not known, we see very intuitive distribution of SNS along the beam (with no

qualitative change as v -+ ); with a maximum at x 0 smoothly decaying to 0 at

the end (x 10) of the beam.

200G x10

0-

1000-

0z (0-2-

Zz

-4

-6

00 4 8 10 0 2 4 6 a lO

Distance Along Top Edge Distance Along Top Edge

Figure 6.2: SNS on Top Edge, Standard Method

We conclude that mixed methods can effectively eliminate stress locking in some

geometrically non-linear problems.
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